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Abstract— Previous congestion control (CC) algorithms based
on deep reinforcement learning (DRL) directly adjust flow
sending rate to respond to dynamic bandwidth change, resulting
in high inference overhead. Such overhead may consume
considerable CPU resources and hurt the datapath performance.
In this paper, we present SPINE, a hierarchical congestion control
algorithm that fully utilizes the performance gain from deep
reinforcement learning but with ultra-low overhead. At its heart,
SPINE decouples the congestion control task into two subtasks in
different timescales and handles them with different components:
1) lightweight CC executor that performs fine-grained control
responding to dynamic bandwidth changes; and 2) RL agent
that works at a coarse-grained level that generates control sub-
policies for the CC executor. Such two-level control architecture
can provide fine-grained DRL-based control with a low model
inference overhead. Real-world experiments and emulations show
that SPINE achieves consistent high performance across various
network conditions with an ultra-low control overhead reduced
by at least 80% compared to its DRL-based counterparts, similar
to classic CC schemes such as Cubic.

Index Terms— Congestion control, deep reinforcement
learning, transport layer protocols.

I. INTRODUCTION

DRIVEN by the tremendous successes achieved by deep
reinforcement learning (DRL) models in wide areas, e.g.,

games [1], [2], [3], computer systems, and networking [4], [5],
[6], [7], the community is exerting efforts to gain the same
success on the network transport by incorporating DRL into
congestion control (CC) [8], [9], [10]. As one of the major
advantages, DRL-based CC schemes have the capability to
adapt to variant network conditions with one single control
policy. Therefore, network engineers can be free from the
operational challenge of manually tuning CC hyperparameters
for unseen network conditions.
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Despite being promising, previous DRL-based CC schemes
suffer from high computation overhead incurred by complex
model inference for sending rate adjustment (§II-B). Such
high inference overhead consumes non-negligible CPU
resources [9] and interferes with the datapath perfor-
mance [11]. Existing solutions handle the overhead issue
by lowering the inference frequency to extend the response
interval [8], [9], [10]. During the interval, the CC is out of
DRL control, either making no rate adjustment [8], [10] or
relying on a classic scheme, e.g., Cubic in Orca [9], as a
remedy. Therefore, they fail to fully exploit the performance
superiority provided by DRL models and is vulnerable to
network congestions due to the coarse-grained control [11].

Given the above dilemma, we ponder a question: can a
DRL-based CC provide fine-grained control for every ACK
while preserving a low computation overhead? In this paper,
we present SPINE to answer this question affirmatively, which
is a fully DRL-based congestion control algorithm that can
perform intelligently fine-grained packet-level control guided
by deep neural networks with low overhead. SPINE adopts
a more flexible paradigm for the RL agent to properly
distribute its learning capability and computation across
different granularity levels of the control policy.

At its heart, SPINE adopts a hierarchical control architecture
consisting of a lightweight CC executor that reacts to
every ACK and loss event as well as a DRL-based policy
generator that periodically generates control sub-policies
for the CC executor to adapt to the change of network
condition, e.g., bandwidth capacity variation or flow arrivals
and departures. Specifically, a sub-policy in SPINE is a
lightweight parameterized control logic based on additive-
increase/multiplicative-decrease (AIMD) and can be defined
by a set of parameters outputted by the policy generator
(§III-C). Compared to the network event reaction (e.g., ACK
and packet loss), the sub-policy adaption for a new network
condition is infrequent, resulting in low-frequency DRL model
inference. Therefore, SPINE can perform a fine-grained DRL-
based CC with a low computation overhead.

To support a timely network adaption while preserving a
lower model inference overhead, SPINE leverages a flexible
sub-policy update strategy by further introducing a watcher
module, a smaller model compared to the policy generator
(§III-D). The watcher judges whether the current sub-policy
still works well and triggers the policy generator to update it if
necessary. As a result, this flexible update strategy significantly
reduces the execution frequency of the policy generator and
potential cross-space (kernel and userspace) communications
involved by sub-policy update operations,1 especially in a
stable network condition.

1The CC executor can be enforced in kernel while the DRL model is usually
executed in userspace.
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We have implemented a fully functional SPINE prototype
in Linux. We have integrated the CC executor with Linux
kernel TCP and implemented cross-space communication
functionalities for the RL model to update its sub-policy.
Based on this prototype, we performed efficient distributed
training in various emulated network conditions and evaluated
it extensively. Experimental results show that SPINE achieves
consistent high performance across emulated networks and
real-world testbeds with ultra-low control overhead. For
example, when using SPINE with a large monitor interval
of 300ms, SPINE stills achieves higher throughput and
lower latency inflation compared to previous DRL-based
CC schemes using a monitor interval of 30ms (§ VII-B).
Meanwhile, it takes a much lower CPU utilization (2.6%
for a single flow) reduced by at least 80% compared to its
DRL-based counterparts (131.5% for Aurora and 14.3% for
Orca) and comparable to classic CC Cubic (1.1%) (§ VII-A).
In addition, SPINE also achieves good fairness property across
homogeneous flows and friendliness to Cubic flows due to its
dedicated training process (VII-D). Finally, SPINE has better
interpretability than previous RL methods. By exploring the
sub-policies decided by SPINE under different traffic patterns,
we observe several insights that may help in the designing of
future congestion control schemes (§ VII-C and § VII-E).

II. MOTIVATIONS

In this section, we explain the trend and difficulty of current
learning-based congestion control algorithms and how the
characteristics of CC motivate our hierarchical control logic.

A. DRL-Based Congestion Control
Unlike supervised learning algorithms that focus on

prediction and classification tasks, reinforcement learning
tackles sequential decision-making processes by maximizing
the cumulative reward in the long run during the interactions
with the environment. Armed with deep neural networks,
deep reinforcement learning plays the core role in achieving
super-human performance in many games and real-world
decision-making tasks [1], [3]. Therefore, researchers have
recently incorporated DRL into congestion control to seek
to improve control policy and generalize to various unseen
network conditions [8], [9], [10]. DRL-based congestion
control schemes generate control actions using a well-
trained RL agent. During the training, the RL agent receives
packet statistics from the network environment and responds
with action (e.g. adjusting cwnd and sending rate). For
every interaction step, the environment generates a reward
regarding the performance metrics (e.g. throughput, latency,
and loss in congestion control). With enough empirical
experience, the agent learns to adjust its signal-response
mapping by updating the deep neural network weights,
so that the cumulative reward during the interaction can be
maximized. While heuristic-based CC algorithms hand-craft
signal-response mapping based on some specific assumptions,
DRL-based methods learn the mapping automatically from the
empirical data, thus showing better generalization and outper-
forming specially engineered methods across various network
conditions [8], [9], [10].

DRL-based CC schemes also differ from online learning
schemes such as Allegro [12] and Vivace [13], which leverage
online learning techniques to adjust the sending rate. These
methods make micro-experiments with the network by both

Fig. 1. The performance of DRL-based CC schemes with different control
intervals.

increasing and decreasing the sending rates and obverse their
performance results. Via comparing the difference, they decide
the next sending rate towards higher performance. On the other
hand, DRL-based CC focuses more on offline learning of the
control policy offline that can be directly deployed to map
network signals to sending rate adjustment, which is often
more efficient and effective as the model will automatically
learn the trade-off between exploration of the network and
exploitation of performance instead of adopting heuristic-
based online learning methods.

B. Overhead vs. Performance

Despite being promising, DRL-based models spend several
orders of magnitude more time and consume much more
computation resources than those simple ACK response
functions in classic CC schemes. Empirical experiments in
§VII-A have shown that previous DRL-based CC schemes
consume much more CPU resources than classic ones such as
Cubic, and the overhead increases with the control frequency.
As a result, there may not be sufficient CPU resources to fully
support the kernel datapath processing pipelines, resulting
in degraded throughput, especially with multiple concurrent
flows [11]. Furthermore, the intrinsic inference latency of the
RL model defines a lower bound over the feasible control
interval, and setting the control interval smaller than it will
result in infinitely accumulated requests and system failure.

On the other hand, adopting DRL-based CC schemes with
a coarse-grained control fails to fully unleash the potential
of deep reinforcement learning. We perform experiments
to demonstrate the performance degradation when the
control frequency decreases. To demonstrate how quickly
these schemes respond to network changes, we emulate a
network with a minimum RTT of 30ms and buffer size
of 375KB, where the bottleneck link bandwidth changes
every 10 seconds. A portion of a 10-minute trace is shown
in Figure 1(a). We use a clean-slate DRL-based scheme
Aurora [8] with different control intervals to send traffic over
the network and record the sending rate. The results show
that Aurora with a large control interval (150ms) can hardly
respond to bandwidth changes quickly due to a less frequent
cwnd adjustment, compared to Aurora with a small control
interval (30ms). Also, it tends to be more unstable under static
bandwidth due to the response lag.2

One way to improve the trade-off between overhead and
performance is to incorporate classic schemes back for fine-
grained control. Orca [9] realizes it by building a two-level

2We also tested Aurora and Orca re-trained with a larger interval (150ms)
and action range (5 * original action). However, due to the slow response, their
model performance degrades severely with dramatic oscillation compared to
their counterparts trained with an interval of 30ms.
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Fig. 2. The control logics of SPINE and previous DRL-based CC algorithms.
By generating sub-policies instead of sending rates, SPINE is able to apply
the DRL model to react to every ACK received with low overhead.

control framework where the RL model and the underlying
scheme (Cubic) control the current cwnd simultaneously at
different frequencies. By restraining the sending rate according
to delay increase, Orca avoids the bufferbloat issue caused
by the loss-based CC Cubic. To show how Orca works with
different control intervals, we emulate the same network with
a static bottleneck link bandwidth (100Mbps) and record the
delay. The result is shown in Figure 1(b). It is obvious that
introducing Cubic will not eliminate the requirement of fine-
grained control of the DRL model: when Orca interacts less
frequently with the cwnd (150ms), it can hardly restrain the
sending rate increased by Cubic after every ACK, leading to
a higher packet delay.

Is it possible to get rid of the trade-off between control
granularity and model performance of DRL-based CC? Our
observation is that all the previous DRL-based schemes focus
on directly adjusting the current sending rate. As a result, the
RL agent needs to perform two subtasks: i) to consistently
update sending rate in high frequency to timely respond to
dynamic bandwidth changes; ii) to adapt its current event-
action mapping to the change of network condition when
the link changes or flows arrive and depart. While DRL-
based schemes are good at subtask (ii) for their capabilities
to generalize to various network conditions, the overhead
issue keeps them from responding to dynamic bandwidth
changes quickly, resulting in sub-optimal performance. On the
other hand, classic schemes are good at subtask (i) due to
their simple hardwired signal-action mapping but can hardly
automatically adapt to the network conditions where their
assumptions no longer hold. Thus, we argue that in order to
achieve high model performance with low overhead, we need
to decouple the CC task and adopt a hierarchical architecture
to handle the two subtasks in different timescales.

C. Key Design Decisions
Inspired by §II-B, our key design decision is to detach

the time-consuming DRL processing from quick sending rate
adjustment. To achieve this, SPINE builds a hierarchical policy
structure powered by DRL, which learns a DRL model that
generates sub-policies instead of sending rates. A sub-policy
can be regarded as a parameterized mapping from packet-level
events to sending rate adjustment, which is simple and fast
compared to the DRL model, thus enabling instantaneously
responding to network signals at fine-grained level. As shown
in Figure 2, the DRL agent periodically observes the current
network condition and generates a sub-policy. As the network
changes, the DRL agent keeps updating the current sub-policy
at a coarse-grained level. This design brings several benefits
to solve the dilemma between performance and overhead as
follows:

Fig. 3. The high-level architecture of SPINE.

• By generating sub-policy instead of volatile cwnd and
sending rate, we greatly reduce the required work frequency
for DRL model, resulting in a much lower overhead
than previous DRL-based CC algorithms. As a result, the
overhead issue is no longer a severe concern when designing
DRL-based CC algorithms. (§ VII-A)

• By learning to control every single response at fine-grained
level through sub-policy, SPINE achieves consistent high
performance across various network conditions, even in
dynamic ones where the link capacity varies drastically.
(§VII-B)

• The hierarchical policy architecture enables a more flexible
policy update strategy. After inspecting the network
condition, the DRL model can judge whether the current
sub-policy still works properly. If so, the DRL model has
no need to update the sub-policy, saving the cost of model
inference and cross-space communication. This adaptive
strategy further lowers the framework overhead significantly
under stable network conditions (§ VII-E1).

III. DESIGN

A. Overview
Figure 3 overviews SPINE. It consists of three blocks: a

policy generator, a watcher, and a CC executor. The policy
generator and the watcher together form the RL agent that
traces the traffic pattern and updates the current sub-policy.
The CC executor is implemented in the kernel to enforce
the control sub-policy generated by the RL agent, adjusting
sending rate responding to ACK and packet loss. Observing
the packet statistics collected, the watcher checks whether the
deployed sub-policy is still working well under the current
network condition. If so, the RL agent takes no action.
Otherwise, it will trigger the policy generator module and
submit a report encoding the network condition information.
Once activated by the watcher and receiving a new report, the
policy generator will output a new sub-policy and update it in
the CC executor. In addition, it will update the watcher so as
to continue supervising the updated new sub-policy.

As a result, SPINE utilizes a hierarchical control logic.
As shown in Figure 4, the policy generator, watcher and CC
executor run in different timescales. The CC executor provides
fine-grained control to respond to every acknowledgement.
For every monitor interval (MI), the watcher observes the
packet statistics as the current state input of the RL agent
and triggers the policy generator once in a while. Finally,
the policy generator works in a flexible signal-driven style:
it only updates the watcher and the executor when triggered.
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Fig. 4. The time diagram of SPINE’s hierarchical control logic.

As a result, the policy generator will not be triggered when
the current sub-policy works well and thus have a much
lower average working frequency. In addition, the watcher
is generally smaller compared to the policy generator due
to its simple learning target and thus has a smaller regular
computation cost than previous DRL-based schemes.

We will introduce each block in detail in the following
subsections. §III-B introduces the basic components of the RL
agent, including input state and reward definition. We leave the
action definition to §III-C as it relates to the sub-policy used
in the CC executor. §III-D introduces the hierarchical LSTM
model architecture that combines policy generator and watcher
modules in the RL agent, and its training algorithm is given
in §V.

B. RL Agent
Both the policy generator and the watcher are integrated

into the RL agent. By training the RL agent to maximize the
reward accumulated over a flow’s lifetime, we achieve two
goals: i) we refine the policy generator to produce the optimal
sub-policy capable of collecting the maximum reward under
the current network conditions, and ii) we train the watcher
to monitor network signal feedback and trigger the policy
generator when the existing sub-policy no longer aligns with
the network conditions. Specifically, the RL agent works as
follows: in each monitor interval (e.g. t-th MI), it perceives the
current network condition by gathering packet statistics, which
are regarded as the current state st of the agent. That state
input is then fed into the model based on deep neural networks,
which will decide whether to update the underlying sub-policy
by setting a flag trigger. If trigger is True, the model
will generate a new parameterized sub-policy by outputting
its parameter setting at and update it to the CC executor
by sending the parameter setting into the kernel. Otherwise,
the model output is ignored and the sub-policy in the CC
executor keeps unchanged. Once a flow is initialized, the RL
agent consistently observes the dynamic network condition and
updates sub-policy to maximize target performance goal.

State The input state of the RL agent contains collected
packet statistics of the flow during the last MI. Here
we consider the features that are closely related to the
characteristic of the current network condition and flow status,
which are shown in Table I. The throughput and delay
are normalized with maximum observed throughput and the
minimum observed one-way delay respectively. Beyond that,
we also include the currently deployed sub-policy into the
state, so SPINE can assess the performance of the current sub-
policy for more intelligent update decision-making.

Some previous DRL CC schemes [8], [9], [10] stack a
fixed-length of history features so that the agent can infer
the current network condition more precisely by extracting

TABLE I
THE PACKET STATISTICS AS SPINE’S RL AGENT INPUT

information from history packet statistics. The history length
is often small because the model size as well as its training
difficulty will increase when the input feature dimension is
augmented. However, as the policy generator of SPINE works
in hundreds of milliseconds or even seconds, much longer
than MI, we need a model architecture that is able to capture
patterns and dependencies from long-term history features.
Therefore, we adopt the recurrent neural networks (RNN) as
the building block of the hierarchical policy structure (§III-D).
RNN is able to capture patterns and dependencies from long-
term history features without the need of stacking features,
which is important for the policy generator and the watcher to
memorize their state histories across sparse triggering events.
As a result, we can directly feed the current state feature into
the model without state stacking.

Reward An RL agent needs to define a reward function to
quantify the performance criterion of the task, which guides
the agent to improve the generated sequence of sub-policies
in the training phase. Updated with a new sub-policy from the
policy generator, the CC executor interacts with the network
environment by adjusting the flow sending rate and collecting
rewards for each MI. Inspired by the Power-based reward in
Orca [9], we define the reward function as follows:

R=
(

thr−ζ × loss

lat′

)
/

(
thrmax

latmin

)
−αpsp × trigger, (1)

where

lat′ =
{

latmin (latmin ≤ lat ≤ β × latmin)
lat otherwise.

(2)

The first term in Equation 1 is based on the well-studied
metric Power thr

lat [14] and has been used in Orca. Generally,
we can regard it as the ratio of normalized throughput to
normalized latency, with a penalty on lost packets (weighted
by ζ). References [15], [16] shows that by maximizing Power,
both the network and individual flows achieve the optimal
point. However, as the Power cannot be fully optimized in
a decentralized way [17], a small queuing delay is allowed
to achieve the maximum bandwidth. As shown in Equation 2,
the parameter β controls the tolerance: when the latency is
smaller than β ∗ latmin, no penalty of latency is incurred.

The second term defines the penalty of triggering the policy
generator to update a new sub-policy, as it will cause further
inference overhead of the policy generator and the cross-space
communication for sub-policy update. We call the penalty term
the pit stop penalty, as changing sub-policies takes overhead,
and we want to avoid it if not necessary, which is similar to
that of changing tyres in motorsports. Without the pit stop
penalty, the RL agent cannot resist the temptation to switch
sub-policies for every MI, even with negligible changes. The
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indicator trigger is equal to 1 when the watcher triggers the
policy generator, otherwise 0. The coefficient αpsp defines the
significance of the penalty. Empirical experiments in §VII-E1
show how this penalty controls the behavior of the watcher
and thus the actual working frequency of the policy generator.

C. CC Executor
The Congestion Control (CC) executor in our system,

SPINE, functions as one of the pluggable congestion control
modules, comparable to Cubic and BBR. However, it uniquely
executes sub-policies generated by the policy generator. To be
more precise, the CC executor has already embodied the
execution logic of the parameterized sub-policy. The policy
generator’s responsibility is solely to generate and update the
hyperparameters of the sub-policy, which in turn, modulate
the behavior of the CC executor. To meet the design goal of
SPINE, we expect our parameterized sub-policy structure to
have the following features:

• Simple. The sub-policy should be simple enough so that
the CC executor can execute it in the kernel with very low
computational overhead.

• Fine-grained control. The sub-policy should employ fine-
grained control over the sending rate or cwnd to quickly
respond to dynamic bandwidth changes.

• Flexible. The sub-policy is able to approximate various
control mappings from signals to sending rates, enabling
the learning of arbitrary optimal policy.
Based on these feature requirements, we design a simple

yet efficient sub-policy based on the idea of AIMD. It adopts
a combination of the three most commonly used indicators
in congestion control: received ACK, packet delay, and loss.
While executing the sub-policy, the CC executor also performs
an extra slow start function at the beginning in which the
sender multiplies its sending rate by 1.1 for every RTT
until packet loss occurs, similar with Orca. For the sub-
policy execution part, when receiving an ACK packet, the CC
executor updates cwnd with the following equation:

∆cwnd =

−αlat
RTT

RTTmin
≥ αtol + 1

αthr otherwise,
(3)

where 0 ≤ αthr, αlat ≤ 0.5 and 0 ≤ αtol ≤ 2 are
hyperparameters. The behavior of Equation 3 can be described
as this: given a new ACK, the CC executor will inspect the
current RTT by calculating the ratio RTT

RTTmin
. If the ratio is

lower than αtol + 1, it judges the link is not congested and
increases the cwnd by αthr. Otherwise, it decreases the cwnd
by αlat. As a result, the sub-policy defines a target packet
delay point and the sending rate adjustment aggressiveness
towards it in two directions: αthr controls the aggressiveness
in increasing cwnd, αlat controls the sensitivity to queuing
delay and αtol determines the target delay point that indicates
the degree of tolerance for queueing. We note that in order
to reflect the transit delay changes in fine-grained control for
fast response, we estimate RTT with smoothed round-trip time
srtt, which is different from the average packet delay lat of
one MI in the reward function in §III-B.

When packet loss happens, the CC executor performs a
multiplicative decrease of cwnd by a factor of αloss, similar
to Cubic:

cwndnew = αloss × cwnd 0 ≤ αloss ≤ 1, (4)

Fig. 5. The hierarchical recurrent neural network architecture with different
timescales.

where αloss indicates the sensitivity to packet loss event. After
the cwnd is updated, the CC executor calculates the new
pacing rate as follows:

prate =
cwnd

RTT
. (5)

With the above sub-policy structure, the parameter setting
(αthr, αlat, αtol, αloss) determines the behavior of the sub-
policy. We define the above parameter set as the action
output of the policy generator at. When triggered, SPINE will
update the sub-policy with at for the underlying CC executor
that performs lower-level control. Through controlling the
parameter setting, SPINE customizes the response of sub-
policy to different signals to best suit the current network
condition, as illustrated in §VII-C.

One criticism often levelled at DRL-based algorithms
concerns their questionable ability to generalize to unseen
environments. SPINE counters this critique by defining a
sub-policy control mechanism and employing an RL model
solely for hyperparameter tuning. This ensures that, during the
training process, the search space for the policy of our system
is restricted to a dependable policy pool, thereby considerably
enhancing the system’s ability to generalize to unobserved
network conditions. For instance, the sub-policy is designed to
increment the CWND until the experienced RTT ratio exceeds
αtol +1, where αtol ≥ 0. Consequently, our system is assured
to fully utilize the link until RTT inflation occurs, provided
there is only one flow present in the bottleneck.

D. Hierarchical Recurrent Architecture
In this section, we introduce the model architecture used

in the RL agent. Inspired by the hierarchical multiscale
recurrent neural network architecture (HM-RNN) proposed
in [18], we design a hierarchical recurrent model, where
both the watcher and the policy generator adopt recurrent
neural networks as the basic building block and are connected
with the report and update communications. We depict the
two-layer model in Figure 5. The first layer represents the
watcher, which is fed with input state st and adaptively
triggers the upper layer. The second layer represents the policy
generator that outputs the sub-policy parameter setting at =
(αthr, αlat, αtol, αloss) mentioned in §III-C. Once triggered,
it will receive the submitted report from the watcher layer and
then i) generate a new parameter set at to update the sub-
policy, and ii) update the watcher. By integrating the policy
generator and the watcher together, we can perform gradient
descent to collaboratively learn the model weights in both
modules.

We use ht, ot = fRNN (ht−1, xt) to denote how an
RNN block receives input and hidden state to update its
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internal state and output new hidden state, which, in fact,
can be instantiated with any popular recurrent neural network
architectures. At time step t, the watcher receives the current
state st and the hidden states from both itself and the upper
layer (hw

t−1, h
p
t−1) generated in the last time step. It then

outputs i) z′t that decides whether to trigger the upper layer,
and ii) the new hidden state hw

t .

hw
t , z′t = fw

RNN

(
concat

(
hw

t−1, h
p
t−1

)
, st

)
. (6)

The binary trigger value zt is then obtained by:

zt =
{

1 z′t ≥ 0
0 otherwise.

(7)

The policy generator works based on the value of the trigger
zt:

hp
t , at =

{
hp

t−1, at−1 zt = 0
fp

RNN (hp
t−1, h

w
t ) zt = 1,

(8)

where at is the output sub-policy parameter setting. When
triggered (zt = 1), the policy generator takes the hidden state
of the watcher as the input report to generate new sub-policy
output. Otherwise, it just reuses the previous hidden state
and output results, and the watcher reuses the old hp

t−1 for
Equation 6.

The hierarchical policy model in SPINE is different
from HM-RNN in several aspects: i) HM-RNN adopts the
hierarchical structure to extract high-level representations for
natural language modeling, where the higher layers model
the long-term dependencies (e.g. sentences or paragraphs).
In SPINE, we adopt the hierarchical architecture as the
policy model for reinforcement learning, where the policy
generator layer focuses on outputting long-term policies; ii)
HM-RNN sets complex constraints on the communications
between layers to automatically detect the boundaries between
sentences and paragraphs. In SPINE, we simplify it to let the
policy generator obtain all the available history information
for policy decision-making.

IV. ANALYSIS

In this section, we perform a theoretical staleness analysis
on SPINE with assumptions to show that controlling sub-
policies makes the model less sensitive to control interval.
We then present how the watcher module brings overhead
reduction to the control system. Due to space limitations, the
full proofs of the theorems in this section can be found in
Supplementary Materials.

Modeling the trade-off between performance and control
interval. For our CC algorithm working with fixed monitor
interval T (i.e., the working frequency of the watcher/agent
is 1/T ), it detects the network condition for each interval
and updates a new sub-policy that fits best. To simplify the
analysis, we assume the sub-policy works in binary mode: it
either functions “well” or “badly” with respect to the current
network condition,3 and the RL agent has learned to always
generate a “well” sub-policy for the current network condition.
We also assume that the sub-policy will become stale as the
network environment changes, which we define as a policy
drift event. After the event, it will perform “badly” due to

3In our context, a good sub-policy denotes a policy that can collects more
reward during its operative period.

TABLE II
THE EFFECTIVE TIME RATIOS (ETR) WITH DIFFERENT

MIS AND POLICY DRIFT EVENT FREQUENCIES

outdated sub-policy until SPINE updates it in the next MI.
Thus, all time periods during which the sub-policy is stale (or
fresh) are treated equally in terms of performance. We refer to
the ratio of the effective time when the sub-policy functions
well to the total time as the effective time ratio (ETR) and
use it to measure the effectiveness of CC algorithms in this
section. The following theorem shows how the effective time
ratio relates to the dynamic of the network condition and the
control interval.

Theorem 1: Suppose the time between two policy drift
events complies with an exponential distribution with param-
eter λ. Then, the effective time ratio of SPINE with fixed MI
length T is 1

k (1−e−k), where k = λT is the expected number
of policy drift events happening during one MI.

The distribution parameter λ defines the policy drift event
frequency and thus how fast a sub-policy will become stale.
It is decided by both the dynamics of the network environment
and the sub-policy structure. A sub-policy that works well
for a longer period should have a lower λ value. Based on
the theorem, we present how the effective time ratio changes
according to the MI length T and λ in Table II. The result
intuitively shows that:
• Because the effective time ratio is defined by k = λT ,

when adopting a control policy with a higher policy drift
event frequency (large λ), the CC scheme needs a lower
control interval (T ) to stay performant. For example,
when the policy drift event frequency is low (e.g., λ = 1,
which means the sub-policy will become outdated after
one second on average), we only need a course-grained
control interval of 200ms to achieve effective control
(ETR = 90.6%). On the other hand, when the poilcy
drift event frequency is high (e.g., λ = 1000), even
with a 5ms control interval, the control policy can
only achieve a ETR of 19.9%. If we regard adjusting
cwnd as the control policy, it will incur a much larger
policy drift event frequency, as the sending rate needs
to be updated quickly to respond to available dynamic
bandwidth. Therefore, we have to define a much lower
control interval to guarantee a performant policy, which
will incur higher overhead, as discussed in the motivation
section.

• The effective time ratio is much more sensitive to the
value of k when it is larger. For example, when k
changes from 0.005 to 0.5, the ETR of the policy only
decreases moderately from 99.7% to 78.7%. However,
when k further increases from 5 to 500, its ETR decrease
drastically from 19.9% to 0.2%. Therefore, as the policy
drift events that make our sub-policy outdated (e.g., link
capacity changes or flow arrivals and departures) tend
to happen less, SPINE will result in a lower policy
drift frequency (lower λ) and thus achieve more robust
performant congestion control.
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Though SPINE’s sub-policy can achieve a better trade-off
between performance and control granularity than directly
controlling the sending rate based on the above analysis.
How to deliberately design a parametrized sub-policy with a
minimum λ (i.e., being effective for the longest period) is an
interesting topic that we hope to study in the future.

Watcher analysis. The following theorem shows when to
add a watcher to lower the computation overhead of SPINE.

Theorem 2: With the assumption in Theorem 1, the costs of
SPINE with or without a watcher are equal if costw

costp
= e−k,

where costw and costp are the costs of the watcher and the
policy generator, and k = λT .

Thus, when k is small with our sub-policy strategy,
a watcher model slightly smaller than the policy generator
(e−kcostp) is enough to gain overhead benefit. For example,
when T = 200ms and λ = 1, the watcher design will lower
the computation overhead of SPINE as long as its model
overhead is less than e−k ≈ 81.9% of the policy generator.

V. TRAINING ALGORITHM

To design a DRL-based CC algorithm, we first formulate
the CC problem as a reinforcement learning problem. At each
t-th MI, the flow/agent sequentially interacts with the network
environment in the following way: it observes packet statistics
as the state st ∈ S, and generates new sub-policy at ∈ A based
on the agent policy π : S → A. The sub-policy responds to
packet-level signals by adjusting sending rate during the next
MI, and the flow will receive a reward rt based on the reward
function and newly collected statistics as the next state st+1.
Though the formulation assumes that the agent outputs sub-
policy for every MI, we will directly reuse the old sub-policy
in the intervals when the watcher is not triggered according
to our adaptively updated strategy. The goal of the agent is to
maximize the expected cumulative reward during the sequence
of interactions J = E(

∑T
t=0 γtrt), where γ is a discount

factor to help the agent focus more on collected reward in the
near future.

We adopt deep deterministic policy gradient (DDPG) [19],
a famous model-free off-policy RL algorithm to learn sub-
policies. During the training, the RL agent updates the model
parameters of our hierarchical recurrent neural networks to
adjust the mapping from packet statistics to sub-policy so
as to maximize collected rewards. The key features of the
training algorithm of SPINE are as follows. See Supplementary
Materials for the complete training algorithm.

Stored hidden state and burn-in steps. In our system,
SPINE, we leverage a recurrent model as the policy model.
This model is designed to receive and generate hidden states,
thereby encapsulating historical information efficiently. Nev-
ertheless, traditional Reinforcement Learning (RL) training
methods predominantly store interaction data, neglecting the
hidden states generated throughout the process. This can
potentially result in a loss of historical data and cause training
instability. To circumvent these problems, we incorporate
strategies proposed in [20]. Primarily, we preserve the
recurrent hidden state within the accumulated trajectories.
This preserved state is then used to initialize the policy
model during training, ensuring a comprehensive inclusion of
historical information. Further, during the training phase, while
sampling sequences of interactions, we extract an additional
segment from the start of the sequence, referred to as ‘burn-
in’ steps. This additional segment solely participates in the

TABLE III
TRAINING ENVIRONMENT PARAMETERS

forwarding phase, aiding in establishing a stable hidden state
at the onset of the sample sequence. These strategies enable
us to mitigate the training difficulties inherent to RNN models
and enhance the effectiveness of our approach.

Probabilistic trigger Two problems exist in training the
trigger unit of the watcher: i) It is non-differentiable. The
derivatives of Equation 7 are zero almost everywhere, so gradi-
ent back-propagation cannot proceed; ii) As exploration plays
an important part in reinforcement learning to collect rich
experience, when untriggered, the deterministic trigger unit
prevents the agent from exploring more diversified sub-policy
decisions (e.g., “Can I challenge the status quo with a better
sub-policy?”). Therefore, during the training, we inject noise
into the unit by replacing the deterministic trigger unit in
Equation 7 with a probabilistic one during training:

zt ∼ Binomial(z′t). (9)

It is plain to see that E(zt) = z′t and dE(zt)
dz′

t
= 1. Thus

for back-propagation, we let the gradient simply go through
the unit without change as if it is an identity function so that
the watcher can learn to update its triggering strategy. As a
result, SPINE is able to explore the possibility of improving
the current sub-policy generated by the policy generator, even
if it performs poorly for the time being and the watcher
does not recommend it through a low z′t value. Based on the
probabilistic unit, we will run the policy generator layer for
every time interval during the training phase to update a better
sub-policy to replace the current one. While in the inference
phase, the policy generator only works when zt = 1, thus
saving most of incurred inference overhead.

VI. IMPLEMENTATION

Model Architecture We use Pytorch [21] to build the
hierarchical policy model in §III-D, where LSTM is used as
the building block for the recurrent model. The LSTM layers
in the watcher and policy generator consist of 64 and 128-
dimensional hidden state vectors, respectively. In the policy
generator, we feed the LSTM layer hidden state hp

t into an
MLP layer and a tanh layer to get the output action at.
The critic model used during the training (see the training
details in Supplementary Materials) also adopts a single
LSTM layer with a 128-dimensional hidden state vector.
For the CC executor, we implement a congestion control
module inside the Linux kernel TCP stack which receives
control parameters from the RL agent and performs ACK-level
congestion control. Inspired by CCP [22], the CC executor and
userspace RL model are communicated via netlink [23].

Training Our training implementation is based on a gener-
alized RL training framework DI-engine [24], which supports
various DRL algorithms and customized environments and
policies. We build our emulated congestion control training
environments based on Pantheon [25], where Mahimahi [26]
is used to emulate various network conditions. The range of
settings of the training environments is shown in Table III.
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Fig. 6. The performances and overheads of SPINE and previous DRL-based algorithms.

TABLE IV
TRAINING HYPERPARAMETERS IN SPINE

We also add a random number of Cubic flows as the
background traffic. In order to stabilize the training process,
SPINE adopts episode-based training. Each episode consists
of two phases: the collecting phase and the learning phase.
In the collecting phase, several distributed collectors perceive
states and enforce actions in various training environments
to collect experiences for a period of time, which are stored
in a data structure called replay memory [1]. In the learning
phase, the centralized learner samples experiences from the
replay memory for training. As a result, the learner updates
the model only after the collectors have collected enough
new experiences with sufficient length, and the experiences
collected in one episode are from the static RL agent with no
update. Therefore, the learning process will be less stochastic
and the model will converge faster. We use 8 actors to
collect the training experience in parallel. The entire training
hyperparameter set is given in Table IV. We train and evaluate
SPINE on a Linux server with 80 CPU cores, 256GB RAM,
and equipped with NVIDIA GeForce RTX 3090 GPU.

VII. EVALUATION

In this section, we evaluate the performance of SPINE
with emulated and real testbed experiments. In §VII-A,
we show how SPINE preserves high performance with low
DRL model inference frequency due to its insensitivity to
monitor interval. In §VII-B, we demonstrate that SPINE
achieves consistent high performance across a wide range
of network conditions, including dynamically changing ones.
For a better understanding of the control logic of SPINE,
we inspect how SPINE updates its sub-policy in §VII-C.
We evaluate the convergence properties of SPINE in §VII-D.
Finally, we inspect the improvement brought by the watcher
module and explore more possibilities of SPINE in §VII-E.

Evaluation setup. In emulated experiments, unless
specified otherwise, we establish the network as the dumbbell

topology with one single flow by default. The emulated
bottleneck is implemented with Mahimahi [26]. In the real-
world experiments, we turn to Pantheon [25] framework and
deploy the sender and receiver at two AWS nodes.

A. Monitor Interval Insensitivity
To understand how SPINE reduces the overhead without

undermining performance by lowering the control interval,
we continue the motivation experiment in §II-B and evaluate
SPINE and previous DRL-based algorithms with different MIs.
We use a larger buffer size (750KB) to allow enough latency
inflation to indicate the congestion. We repeat each trial
10 times and report their average performance (throughput and
latency) and the corresponding overheads in Figure 6.4 The
performances of Cubic and BBR are also shown as baselines.
With the results of the experiment, we identify the following
key observations:
• With the increase in monitor interval, the performance of

previous DRL-based CC algorithms degrades: Aurora fails
to achieve full bandwidth utilization (Figure 6(a)). The
reason is that its sending rate is directly controlled by the
RL model, which is unable to respond to bandwidth changes
when the control frequency is low, and the control action
may easily become stale. Orca, on the other hand, though
achieving low latency with high frequency, has even higher
latency than Cubic with larger MIs (Figure 6(b)). The reason
is that, without a fine-grained control granularity, Orca can
hardly restrain the increasing cwnd promptly, and thus keep
experiencing high queuing delay.

• The performances of previous DRL-based CC algorithms
also degrade when the MI decreases to less than 30ms.
We inspect the implementations of these algorithms and
find that they generally take more than 10ms for the model
inference and cross-space communication between the user
space and the kernel. Thus, we think the reason for the
degradation is that when the MI is small enough to be
similar to the running time for enforcing new action, the
actual time between when the action is enforced and when
the next state is collected is very small. Therefore, there is
not enough time left to collect effective feedback, and the
agent cannot make timely intelligent decisions.

• SPINE’s high performance is insensitive to the changing
of MI. As shown in Figure 6(a) and Figure 6(b), SPINE
yields consistent high link utilization with small queue in
bottleneck across various MIs from 20ms to 300ms. The
reason is that SPINE imbues control response to every

4The variance of the repeated results are within ±5%.
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Fig. 7. The performance of SPINE and other CC algorithms in terms of link utilization and latency under varying bandwidth, base delay, loss rate and
bottleneck buffer size. The link utilization is defined as the ratio of throughput to the link capacity, and the delay ratio as the ratio of packet delay to the base
one-way delay.

Fig. 8. SPINE demonstrate good reactivity.

ACK with reinforcement learning intelligence, whose actual
control frequency is independent from and much higher than
the MI used. The results illustrate the important role of the
hierarchical policy structure in SPINE’s design. Even with a
much lower control frequency (e.g., MI of 300ms), SPINE’s
sub-policy in the CC executor can still properly adjust the
sending rate at a packet-level control level and thus can
adapt to bandwidth changes agilely.

• With the increase of monitor interval, the overheads of
SPINE and DRL-based CC algorithms decrease due to lower
inference frequency, as shown in Figure 6(c). The extent of
overhead decrease also depends on their implementations.
For example, the major overhead in Aurora may result from
its inefficient userspace implementation.

The insensitivity property to control interval enables the
deployment of SPINE with an ultra-low working frequency
without undermining model performance, which therefore
achieves a much lower model overhead compared to other
DRL-based algorithms. For example, when using SPINE with
a monitor interval of 300ms, it achieves better performance
than previous DRL-based solutions (e.g., Orca) using monitor
intervals of 30ms but with a much lower CPU utilization
(from 10.5% to 2.6%), which is comparable to heuristic-based
algorithms such as Cubic (1.1%).

Fig. 9. The throughput vs. latency in 10Gbps high-speed network.

B. Consistent High Performance
Here, we evaluate SPINE with extensive emulations

and real-world experiments to show its consistent high
performance across various network environments. We repeat
each test 10 times and report the average values. We use
Orca and Aurora with MI of 30ms as it preserves relatively
high performance, as shown in §VII-A. For SPINE, we use
MI of 200ms, which has a much lower overhead due to its
low inference frequency. We also compare SPINE with other
heuristic-based CC schemes including Cubic [27], BBR [28],
Copa [29], Vegas [30] and online learning scheme Vivace [13].

1) Diverse Emulated Networks: We first compare SPINE
with other CC algorithms across a wide and diverse range
of emulated networks by demonstrating the link utilization
and latency ratio with varying bandwidth, base delay, random
loss rate, and buffer size. Specifically, we alter one link
characteristic of them at a time while holding the other
three constant, and compare SPINE with other baselines. For
constant values, we use the bandwidth of 100Mbps, base RTT
of 30ms, buffer size of 1 BDP (Bandwidth-Delay Product),
and no random loss rate. The average results of 10 trials are
shown in Figure 7.5

5The variance of the repeated results are within ±5%.
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Fig. 10. Overall normalized throughput vs one-way delay in real-world. The normalization bandwidths are both 1200Mbps and normalization one-way delays
are 35ms and 115ms, respectively.

Fig. 11. Details of SPINE’s sub-policy when competing with Cubic.

Fig. 12. Jain indices of competing flows.

Fig. 13. SPINE’s fairness across the different number of flows.

We observe that SPINE achieves consistent good perfor-
mance across different bandwidths, latencies, random losses,
and buffer sizes compared to other CC baselines. For example,
when changing bandwidth, SPINE achieves high throughput
similar to Cubic and BBR, which, however, both incur much
larger queuing latency with a delay ratio from 2 to 3. The
performance of previous DRL-based schemes Aurora and Orca
degrades when the bandwidth or the base delay is large. This
may be due to their limited generalization capability as they
have not been trained in links with large BDPs. On the other
hand, SPINE exhibits promising generalization ability with a
limited range of training environments, which, we think, can
further be improved with extensive training data from the
wild Internet. We attribute SPINE’s good generalizability to

the introduction of domain-specific knowledge of congestion
control, as discussed in §III-C.

When we vary the random loss rate, schemes that use packet
loss (Orca, Vivace, Vegas, Cubic, and SPINE) as congestion
signals reduce their bandwidths apparently. Because SPINE
learns to use both latency and loss as signals to detect network
congestion, non-congestion loss alone has a limited effect on
the decision-making of SPINE. For example, when the random
loss rate is 1%, the link utilization of Cubic drops dramatically
(from 0.95 to 0.03), and that of SPINE decreases much slower
(from 0.95 to 0.64). For varying buffer size, SPINE achieves
small latency inflation and near full bandwidth utilization
with buffer size from 0.2 to 2.2 BDP. We attribute the low
requirement of the buffer size of SPINE to its fine-grained
control and thus a stable queue. On the other hand, the link
utilization of Orca reduces to 80% in shallow buffer (0.2 BDP),
as the MI of 30ms for Orca may not be enough to restrain the
underlying Cubic without causing latency inflation and loss.

2) Reactivity: To evaluate how SPINE reacts to dynamically
changing network conditions, we create an emulated link with
a trace from LTE network [31] with dramatically changing
capacity. We use base RTT of 30ms, and an adequate buffer to
absorb the traffic. As illustrated in Figure 8, SPINE surprisingly
achieves good reactivity with a large MI of 200ms: it achieves
the highest bandwidth (5.08Mbps). Meanwhile, SPINE can
achieve the lowest latency (RTT=78.1 ms) among other
learning-based CC schemes, which, however, all use a small
MI of 30ms (Vivace defines RTTmin as its MI). We attribute
the good reactivity of SPINE to its hierarchical policy structure,
where the sub-policy performs a fine-grained control with a
low DRL model inference frequency.

3) High-Speed Networks: To assess the performance of
SPINE in high-speed network environments, we construct
a dumbbell topology with high-speed connections in our
testbed. We establish a connection between two end-hosts
with an NVIDIA ConnectX-5 NIC paired with a Mellanox
SN2700 100G switch powered by Intel Xeon(R) Gold 5218R
CPU. To emulate a real-world high-speed WAN scenario,
we cap the receiver bandwidth at 10Gbps and introduce an
additional one-way latency of 15ms (with tc + citation).
Due to their implementation overhead, the bandwidths of
previous learning-based schemes Aurora, Orca, and Vivace are
restricted to a maximum of 1Gbps. The results for throughput
and latency of SPINE and other baselines are depicted
in Figure 9. We observe that SPINE exhibits comparable
performance with BBR and Cubic, closely matching the full
capacity of the available link bandwidth while achieving
much lower latency. The results underscore that SPINE’s
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Fig. 14. Throughput ratios to Cubic across RTTs.

Fig. 15. Throughput ratios to bandwidth of SPINE, Cubic and BBR across
buffer sizes.

performance remains robust in high-speed networks, even
when operating at bandwidths significantly beyond its training
region.

4) Real-World Experiments: For real-world evaluation of
SPINE, we follow the experiment settings in Orca [9] and
evaluate SPINE in the inter-continent scenario and intra-
continent scenarios. We deploy the sender at AWS Seoul and
locate the receiver at AWS Singapore and London to vary
the experiment environment. The bandwidths of both links are
up to 10Gbps. We evaluate each CC scheme by running its
one flow for 60 seconds, repeating each trial 10 times, and
summarize the overall average normalized throughput and one-
way delay in Figure 10.

We observe that SPINE defines one of the frontiers in
terms of high throughput and low latency: it achieves better
link utilization than most CCs, including Cubic. Meanwhile,
it delivers smaller latency than Cubic in both intra-continental
(10(a)) and inter-continental (10(a)) scenarios, respectively.
The reason is that SPINE adopts the DRL model to adjust the
sending rate at a fine-grained level and thus can rapidly adapt
to Internet bandwidth fluctuation without incurring bufferbloat.
On the other hand, though performing well in the emulated
experiments, other learning-based algorithms such as Orca,
Aurora, and Vivace all fail to achieve high utilization, which
has also been observed in emulated experiments in §VII-B1.
The superior performance of SPINE among learning-based
schemes validates the advantage of our hierarchical policy
structure to imbue ACK-level control with RL intelligence.

C. Under the Hood
In this section, we take a deeper look at the behavior of

SPINE to understand how it updates the sub-policy to adapt to
various network conditions. One line of criticism of learning-
based algorithms is their poor interpretability, which hinders
researchers and engineers from inspecting cases with poor
performance and improving the algorithm. However, SPINE
provides semantically task-related sub-policy parameters for
lower-level congestion control, which, as we illustrate in this
section, will provide insights into the design of a better CC
algorithm.

To shed light on how SPINE “thinks” during the control
process, we run a SPINE flow on an emulated link of 100Mbps
with 30ms base RTT and one BDP buffer. We start a Cubic
flow during this process and inspect how SPINE responds by
updating its sub-policy. We show its behavior in Figure 11
and mark the updated parameter for the sub-policy on the
figure. We observe that SPINE starts with low αthr (0.06)
and αlat (0.08) to enforce a moderate sending rate adjustment
strategy (see §III-C for meaning of parameters). It also adopts
a low αtol (0.15) to maintain low latency inflation (1.2×
RTTmin). When the Cubic flow goes in, SPINE detects sudden
inflation at packet delay. Thus, it updates the sub-policy with
more aggressive parameters (αthr = 0.18, αlat = 0.18) to
quickly adjust its cwnd responding to ACK and delay inflation
signals. Meanwhile, it adopts a higher αtol (0.75) and αloss

to enable tolerance on higher latency inflation and possible
packet loss. When the Cubic flow exits, SPINE then restores
its conservative sub-policy. One interesting observation is that
SPINE maps its packet statistics, primarily the link rate and
the maximum throughput, to a target delay point. When the
SPINE flow detects that its throughput decreases and latency
increases under a conservative sub-policy, it judges that other
aggressive flows come and thus resets its delay equilibrium
point to a larger value until a new consensus on the queuing
delay is achieved. Therefore, though working as a delay-based
scheme, SPINE is able to grab bandwidth from Cubic with its
flexible delay target.

D. Fairness and Friendliness
In this section, we seek to understand how SPINE performs

when competing with other SPINE flows and with Cubic flows.
First, we setup a 100Mbps link with 30ms RTT and 1 BDP
buffer, and we start three flows with a running time of 120s, for
whom we set the inter-arrival time to be 40 seconds. We repeat
each experiment 10 times and calculate the average Jain Index
of each CC algorithm in Figure 12.

We observe that by adopting a Power-based reward that is
maximized at the fair operating point, SPINE achieves better
fairness than the clean-slate DRL-based CC Aurora but is
still not good enough compared to other classic schemes and
Orca, which incorporates Cubic to provide fairness property.
To further explore the generalizability of SPINE’s fairness
property, we also increase the number of competing flows
from 2 to 10 and record their Jain indices in Figure 13. The
results show that SPINE’s fairness stays decent yet slowly
decreases with the increasing of number of competing flows.
The reason is that the current DRL-based algorithms have not
learned toward a fair scheme and have no provable guarantee
of fair convergence. While we focus on reducing overhead
and improving the performance of DRL-based scheme in this
paper, we believe the fairness issue of DRL-based scheme will
soon be solved in the near future, as several works have been
devoted to learning fairness for deep reinforcement learning
recently [32], [33], [34].

We also study the TCP friendliness of SPINE by competing
it with one Cubic flow under different base RTTs. We use
the same link setting as we use in the fairness part and tune
the buffer size correspondingly with respect to varying RTT.
Figure 14 plots the ratio of throughput of evaluated CC to the
throughput of the Cubic flow. We observe that SPINE achieves
good friendliness to Cubic. The reason is that we have added
Cubic as the background traffic during the training, so that
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Fig. 16. The actual average inference interval of the policy generator changes with different pit stop penalty values.

Fig. 17. Spine-Cubic improves Cubic by adaptively tuning its
hyperparameters.

Fig. 18. The average link utilization and latency with concurrent flows.

SPINE learns to become more aggressive when competing with
Cubic flows, as illustrated in §VII-C.

Considering the increasing prevalence of BBR in real-
world Internet scenarios, we broaden our investigation to
explore the friendliness of SPINE in a mixed scenario. This
experiment involves a SPINE flow, a Cubic flow, and a
BBR flow. Keeping the link setting consistent with the TCP
friendliness experiment, we fix the RTT at 50ms and run for
5 minutes. Figure 15 presents the ratios of overall throughput
to bandwidth across varying buffer sizes. In scenarios where
the buffer size was small, BBR predominates over Cubic,
with SPINE demonstrating compatibility with BBR. As the
buffer size escalated, Cubic, being a loss-based scheme,
adopts a more aggressive policy, subsequently claiming
more bandwidth. During this transition, SPINE exhibits a
comparatively gentle behavior towards the other two flows.
The results bolster the demonstration of SPINE’s adaptability
and friendliness in mixed traffic scenarios.

E. Deep Dive

1) The Watcher and Pit Stop Penalty: We next demonstrate
how the watcher affects the working frequency of the policy
generator as well as the overall overhead. As mentioned in
§III-B, the pit stop penalty αpsp controls the trade-off between
overhead and the triggering frequency of the policy generator.
Therefore, we retrain SPINE with different αpsp, and evaluate
both their overheads and the actual average inference intervals
of the policy generator. These models are evaluated on the
two traces used in the motivation experiment (§II-B), where
the first trace has a more dynamic link capacity (square wave)
than the second one (static). To set a baseline, we also train and
evaluate SPINE without a watcher module, which means the
policy generator directly receives the input state and outputs
sub-policy for every MI. We fix the MI of all models as 200ms.

Figure 16 shows the results. We observe that adding a
watcher will consistently and significantly reduce the working
frequency of the policy generator. For example, when αpsp is
set to be 0.03 (that is used in previous evaluation sections),
we can decrease the actual inference interval from 200ms to
1.2 seconds and 1.5 seconds in both traces. As a result, the
CPU utilization is further reduced by almost 40% compared
to the baseline with no watcher. Furthermore, with a larger
penalty value, the trained model tends to trigger the policy
generator less frequently, which would further lower the
CPU overhead. It is because the watcher will learn not to
trigger the policy generator unless it can obtain adequate
performance gain over the pit stop penalty. Therefore, the
penalty allows for small performance variation of the current
sub-policy. However, we do not observe obvious performance
degradations until using a very large penalty value (αpsp =
0.3). Finally, we find that the interval reduction is larger
on the second trace. For example, when αpsp = 0.03, the
inference interval for the second trace is 1.54 seconds, 30%
larger than that in the first one (1.17 seconds). The result
validates our assumption that the watcher tends to update
sub-policy less frequently under stable network conditions.
In practice, the choice of the pit-stop penalty is largely
influenced by factors including the policy generator’s overhead
and network conditions. Specifically, lower generator overhead
can accommodate a higher αpsp, enabling better control
granularity with acceptable overhead increase. Moreover,
in stable network conditions, a lower αpsp can still maintain
a modest policy update frequency, reducing control overhead.

2) SPINE-X: Though in the paper, we mainly evaluate
SPINE using a sub-policy based on AIMD, SPINE can also
adopt other customized sub-policies and even classic CC
schemes by tuning the knobs of the fine-grained control
process. Thus, we can generalize our framework to SPINE-X,
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TABLE V
THE THROUGHPUT AND DELAY OF FLOWS IN LONG-SHORT EXPERIMENT. THE DELAY RATIO IS DEFINED AS THE RATIO

OF THE AVERAGE ONE-WAY PACKET DELAY TO THE BASE ONE-WAY DELAY

TABLE VI
THE THROUGHPUT AND DELAY OF FLOWS IN HETEROGENEOUS RTT EXPERIMENT

where X can be any parameterized sub-policy. To further
explore the potential of our hierarchical policy structure
with existing CC schemes, we adopt a parameterized Cubic
algorithm as the sub-policy in our framework, where the
RL model updates the multiplicative factor β and the cubic
function coefficient C of Cubic. We call it SPINE-Cubic,
and evaluate it under the motivation trace in §VII-A. The
average throughput and one-way delay are shown in Figure 17.
As expected, with the help of our hierarchical policy structure,
the parameterized Cubic scheme is able to achieve lower
delay while preserving full bandwidth utilization. The reason
is that SPINE-Cubic adaptively controls the aggressiveness
of the underlying Cubic through β and C over changing
network environment. Thus, SPINE-Cubic is more flexible
than the original algorithm with fixed hyperparameters. This
improvement provides a great opportunity to adopt SPINE-X
as an auxiliary tool to automatically tune current CC schemes
regarding various network conditions.

In addition, we observe that SPINE-Cubic also inherits the
limitation of Cubic. Because SPINE-Cubic only responds to
packet loss to cut the congestion window, it will still be hard
to mitigate bufferbloat and distinguish non-congestion loss
from congestion loss. Therefore, though classical heuristic-
based CC algorithms can be improved by SPINE framework,
SPINE-X may still hold the drawbacks of the underlying sub-
policy. It remains an open problem how to design a flexible
and simple sub-policy with the minimum assumptions of the
network environment.

3) Scalability: In this section, we further explore the
benefits brought by SPINE’s hierarchical design through
the scalability experiments. We start N concurrent flows
simultaneously (N = 5,10,15,20) on an emulated link of
200Mbps bandwidth, 30ms base RTT and 1 BDP buffer. 4
CPU cores are dedicated exclusively to this set of experiments
to evaluate the scalability. Aurora and Cubic are also tested as
baselines. We record the overall link utilization and latency,
as shown in Figure 18. We observe that with the increased
number of concurrent flows, the aggregated throughput of
Aurora, the naïve DRL-based CC scheme, decreases. The
reason is that due to the high inference overhead of multiple
Aurora flows, the remaining CPU resource is insufficient to

support the pipelined transmissions in the datapath. On the
other hand, SPINE achieves consistently high performance
with up to 20 concurrent flows, similar to Cubic.

Furthermore, we also extend the scalability experiment on
heterogeneous flows, with respect to flow running times and
per-flow RTTs. First, we inspect the performance of short
flows of SPINE co-existing with several long-running flows,
which is the common case in the Internet. Starting with the
previous scalability experiment setup, we vary the running
time of flows so that the concurrent flows consist of 80%
short flows and 20% long flows. Specifically, we initialize
4 long flows running throughout the trial and a lot of short
flows that arrive and depart in a very frequent manner,6
so that there are almost 16 short flows co-existing with
4 long flows for a long period (100 seconds). We repeat the
experiment 20 times and report the average throughput and
latency for both types of flows, and the overall throughput of
all flows in Table V. We can see with the slow-start phase,
short flows of SPINE can grab the bandwidth quickly and
achieves similar throughput to that of long flows. Second,
we conduct experiments to investigate the performance of
multiple SPINE flows with heterogeneous RTTs. With the
same experiment setup, we start 10 large RTT flows (90ms)
and 10 small RTT flows (30ms) running simultaneously for
100 seconds. We repeat the experiment 20 times and record
their throughputs and delay ratios in Table VI. We observe
that SPINE flows with small RTT share lower bandwidth than
those of large RTT. In addition to the aforementioned fairness
issue, another reason for this result is that SPINE flows with
large base RTT, according to Equation 3, tend to have a
target delay point tolerating larger queuing delay under the
same sub-policy. Differentiating the behaviors of flows with
heterogeneous RTTs and improving RTT fairness may be a
future direction of DRL-based CC schemes.

VIII. RELATED WORK

The congestion control task has been an enduring hotspot in
the networking research field for more than three decades with

6Short flows come following the exponential distribution of λ = 4 and
their running times are drawn from the Gaussian distribution N (4, 12).
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a plethora of CC algorithms. The classic schemes [27], [29],
[30], [35], [36], [37], [38] are generally designed based on
heuristics about how should we respond to specific congestion
signals in specific cases and thus are often categorized as
heuristic-based schemes. For example, loss-based schemes
such as Cubic [27], TCP Tahoe, and TCP Reno [35] respond
to packet loss events by cutting the congestion window. On the
other hand, delay-based schemes such as TCP Vegas [30] and
Copa [29] respond to delay changes to keep the queuing delay
low. Heuristic-based algorithms require careful hand-crafting
of the signal-action mapping and can backfire under network
conditions where the heuristics are violated.

There are also CC solutions focusing on specific types of
networks. For example, Sprout [31], Verus [39] and ExLL [40]
focus on highly variable LTE network with self-inflicted
queuing delays and packet losses. On the other hand, works
such as Timely [41], HPCC [42], DCTCP [43] and ICTCP [44]
focus on data center networks with ultra-high bandwidth
and low latency. However, as these methods are deliberately
designed for the characteristics of the target network scenario,
they can hardly be adapted to other network conditions
without a significant amount of time for hand-crafted tuning.
For example, BBR [28] was firstly invented by Google for
inter-datacenter communications and then extended to other
network environments by Google engineers after a few years
of manually engineering.

Recent years have seen a plethora of learning-based CC
algorithms due to the rising of machine learning [6], [8],
[9], [12], [13], [25], [45], [46], [47]. For example, PCC
Allegro [12] and Vivace [13] utilize an online learning
paradigm. Different from machine learning solutions, they
adaptively optimize pre-defined utility functions by exploring
various sending rates and observing feedback from the
network. However, the online exploration phase of them
takes several RTTs to collect empirical performance evidence,
preventing them from reacting quickly to signals timely,
especially when the RTT is large and the network changes
rapidly. DeepCC [45] also adopts two-level logic with DRL
agent and Cubic, where the agent learns to enforce the
maximum congestion window allowed by the underlying
Cubic (cwndmax), which can be regarded as an instance of
SPINE-X mentioned in §VII-E2 without a hierarchical policy
structure.

IX. DISCUSSION

In this section, we give a detailed discussion about
the comparison of deep reinforcement learning and other
related methods including multi-armed bandit and layering as
optimization decomposition.

Backup Mechanisms for DRL-based Solutions: Given
the unpredictable nature of network environments, DRL-based
Congestion Control (CC) algorithms might occasionally fail
or underperform, necessitating the consideration of backup
mechanisms. One possible approach is to introduce classic
CC schemes as a backup when the DRL model underperforms.
For example, Libra [48] implements a control cycle consisting
of exploration, evaluation, and exploitation stages to quantify
the performance of different CC algorithms and facilitate real-
time policy switching. The system can fall back on a classic
CC scheme such as Cubic when necessary, especially during
unstable network conditions where feedback may be delayed
or lost. Exploring these backup mechanisms can pave the

way for more resilient and reliable DRL-based CC algorithms.
We leave it for the future work.

Multi-armed bandit vs RL Another possible RL-based
approach to solve CC is multi-armed bandit [49], where
the agent learns to choose the action that maximizes the
instantaneous reward in one step. Multi-armed bandit is one
of the simplest reinforcement learning algorithms and has
been applied in fuzzing [50], wireless network spectrum
scheduling [51] and small cell activation in 5G networks [52].
However, as congestion control is a sequential decision making
process where the actions (sending rate adjustments) enforced
by the end-host have long-term effect on both the involved
network elements and other competing flows’ behaviors,
we adopt RL rather than bandit to optimize the cumulative
collected reward in the future of the flow’s lifetime in this
work.

Layering as optimization decomposition Many layered
network architectures have been modeled as a generalized
network utility maximization (NUM) problem in an integrated
framework named “layering as optimization decomposi-
tion” [53], where the original optimization problem is
decomposed into subproblems handled by both distributed
computation elements and functional modules in different
layers. We can formulate SPINE as a hybrid decomposition
case of optimization decomposition: the NUM problem is
decomposed not only horizontally across distributed end-
hosts, but also vertically across the policy generator, the
watcher and the CC executor. As the policy generator learns
to control the hyperparameters of the CC executor (sub-
policy) in a data-driven manner, SPINE can be regarded as
an algorithm that adaptively optimizes various parameterized
NUM subproblems implicated by the behavior of the CC
executor to approximately optimize the RL objective function.
An interesting future direction is to demonstrate how
the parameterized subproblem of the underlying sub-policy
affects/limits the approximation of the objective function
theoretically.

X. CONCLUSION

In conclusion, we present SPINE, a DRL-based CC
algorithm. With the help of the hierarchical policy structure,
SPINE achieves ultra-high control frequency with ultra-low
model inference frequency. Therefore, it achieves consistent
high performance across various network conditions with low
overhead comparable to classic CC scheme Cubic.

SPINE is far from being the end of the story, and
there are still many open questions about learning-based
congestion control. However, we believe SPINE has made a
significant step forward towards a practical fully learning-
based congestion control algorithm by providing a new DRL
architecture and training paradigm. Also, the hierarchical
policy architecture proposed in SPINE will shed light on the
adoption of reinforcement learning in various networking and
system applications requiring fine-grained control in the future.
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